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In Laue's dynamical theory of diffraction, the boundary conditions claim to

introduce a mathematical plane instead of the discrete atomic surface of the

crystal. This assumption is analysed from the point of view of Ewald's theory

based on the microscopic discrete model of a crystal, where no boundary

conditions are needed.

1. The crystal surface as a mathematical problem of
Laue's theory

To deal with the problem of the diffraction from crystalline

materials in the short-wavelength region, mostly the approach

introduced by Bethe (1928) and von Laue (1941) is used. The

fundamental equations of Laue's theory are

�Dÿ 1

c2

@2D

@t2
� ÿ4� curl curl P; �P � D: �1�

The electric susceptibility � has the periodicity of the crystal.

To pass over from an in®nite crystal to the diffraction of an

external wave on a semi-in®nite crystal, von Laue writes

(Laue, 1941, p. 264): `The mathematical solution of the

problem raises immediately the question about the nature of

the border surfaces. The optics of the visible region considers

them by right as mathematical surfaces because molecular

roughness is not important as compared with the wavelengths.

For much shorter X-rays, this simpli®cation is not valid. The

mathematical surface of a given orientation as a boundary of

an ideal crystal lattice divides, with a few exceptions, the atoms

and is not therefore a reality. But there is no better idea of the

surface. Luckily the predominant majority of experiments with

X-rays say that the crystal boundary in¯uence is missing; the

total re¯ection at grazing incidence is the unique exception.

Therefore as the hypothesis about the nature of the boundary

is not important we can make, with the exception of grazing

incidence and re¯ection, the most comfortable assumption:

the mathematical surface. Anyway this is the weakest point of

the dynamical theory'. A similar assertion can be found in

Pinsker (1978, p. 37): `The scheme using the mathematical

crystal±vacuum boundary agrees well with experimental data

available'.

The same problem appears in the dynamical diffraction of

neutrons. Sears (1989, p. 178) starts with the SchroÈ dinger

equation

� � v�r� � E ; �2�

v�r� being a periodical function in the crystal volume V and

v�r� � 0 outside V, and continues: `Since v(r) is discontinuous

at the surface of V we must ®nd separate solutions of equation

(2) inside and outside V and then match these solutions by

requiring that  (r) and rrr (r) be continuous at the boundary.

One might, perhaps, question whether it is permissible to treat

the boundary as a well de®ned geometrical surface, since the

wavelength of thermal neutrons is typically of order of 1 AÊ

and, hence, of the same order of magnitude as the interatomic

distance in a crystal. However, the important parameter here

is not the wavelength but the extinction length which is typi-

cally 50 mm which is very much greater than the interatomic

distance. Thus, as long as the scale of any surface roughness is

much less than the extinction length, the surface is optically

smooth and equation (2) is valid'.

On the other hand, Ewald's conception (1916a,b, 1917,

1932, 1937, 1965) was different from that of Bethe and von

Laue.1 Ewald considered a crystal as a discrete system of

classical electrical vibrating dipoles

pm�t� � pm exp�ÿi!t� �3�
®xed at the lattice points. The dipoles are coupled with

retarded electromagnetic forces. An external electromagnetic

wave excites the mechanical vibrations of this system of

coupled dipoles. The electromagnetic waves generated by

oscillating dipoles and superposed on the incident wave are

registered outside the crystal as the re¯ected and transmitted

waves. Thus the problem of Ewald was in fact the mechanical

problem of forced oscillations of a system of electro-

magnetically coupled oscillators where no boundary condi-

tions appear. Nevertheless, in an excellent Commentary on

Ewald's fundamental papers of the dynamical theory of X-ray

diffraction by H. J. Juretschke (1992, p. 96), we can read: `It

seems to me that for Ewald a major stumbling block in an

elegant theory probably was the question of where to locate

1 A very good paper on the relations between Ewald's and Laue's theories is
that of Wagenfeld (1968).



the boundary. For one atom per cell this boundary can be

taken as a mathematical plane, even for arbitrary surface

orientations. But with a distributed cell content, such a surface

would split cells, surely violating some chemical principles.

This question of the true nature of the surface was one of

continuing debate between Ewald and von Laue . . . '.

2. The physical and mathematical boundary of a crystal

In this paper, we tackle the problem of the boundary surface

using Ewald's approach based on the discrete model of a

crystal (Ewald, 1916a,b).2 Let us study the diffraction of a

scalar plane wave3

f �r� � f exp�ikr� �4�
on a periodic system of scatterers ®xed on the lattice points

forming a semi-in®nite crystal

Rm � m1a1 �m2a2 �m3a3; m � �m1;m2;;m3� �5�
m1;m2 � 0;�1;�2; :::;�1; m3 � 0; 1; 2; . . . ;1:

The origin of the orthogonal coordinate system lies at the

lattice point (0,0,0), the plane Oxy coincides with the crystal

surface plane (a1a2). The axis Oz (the unit vector e3) and the

vector a1 � a2 point into the crystal. The lattice (b1,b2) is

reciprocal to the two-dimensional lattice (a1,a2).

The crystal surface lowers the three-dimensional transla-

tional symmetry of an ideal in®nite crystal into a two-dimen-

sional one. Then the wavevectors of the waves re¯ected by a

semi-in®nite crystal are

Kÿpq�k� � k00 � pb1 � qb2 ÿ e3Kpqz�k�
with

Kpqz�k� � � �k2 ÿ �k00 � pb1 � qb2�2�1=2;

p, q being zero, negative or positive integers.

Let us write down the Ewald quantum-mechanical equa-

tions for the diffraction of scalar waves on Fermi delta

potentials (Sears, 1989; Dederichs, 1982). The wavefunction

	(r) describing the diffraction of particles (e.g. neutrons) on a

simple perfect lattice formed by Fermi delta potentials is

	�r� � f exp�ikr� ÿ
X

n

Q
exp�ikjrÿ Rnj�
jrÿ Rnj

'n�Rn�; �6�

which is the superposition of the incident plane wave (4) and

of the spherical waves excited by the point scatterers forming

the crystal. The diffraction amplitude of the nth atom is

Q'n(Ra), where Q is the diffraction length of the scatterer and

the effective ®eld 'n(Rn) incident on the nth atom must satisfy

equations

'n�Rn� � f exp�ikRn� ÿ
X
m6�n

Q
exp�ikjRm ÿ Rnj�
jRm ÿ Rnj

'm�Rm�: �7�

The method of the solution of (6) and (7) is described by

Litzman & RoÂ zsa (1977), Litzman (1978, 1986), Litzman &

Dub (1990), Litzman et al. (1996) in detail. Here we only

summarize the results obtained. Evaluating 'n(Rn) from (7)

and inserting the results into (6), we get for the wavefunction

	r(r) of the re¯ected particles4

	r�r� �P
pq

	r
pq�r�; �8�

where, in the standard two-beam approximation,5

	r
pq�r� � f exp�i�Kÿpq ÿ k�a3=2��kz=Kpqz�1=2

� �Ypq ÿ sign�Ypq��Y2
pq ÿ 1�1=2� exp�iKÿpqr� �9�

with6

Ypq�k� � ÿ 1
2 ��kz=Kpqz�1=2 � �Kpqz=kz�1=2� cos�a3�kÿ Kÿpq�=2�
� hoa3z�kzKpqz�1=2 sin�a3�kÿ Kÿpq�=2�: �10�

The dimensionless parameter ho renders the interaction

between radiation and matter,

ho �
�a1 � a2�
2�a3zQo

; with Q0 � �Qÿ1 ÿ ik�ÿ1:

For example, in neutron diffraction ho is of order 105 and

a3z�kzKpqz�1=2 is of order 100.

Formula (8) for the wavefunction of re¯ected waves has

been deduced within the frame of the microscopic discrete

model of a bounded crystal by using the algebraic procedure.

Thus no crystal boundary plane as used in optics of continuous

media has been considered. Nevertheless, we can pose the

question whether it is possible to introduce a `mathematical'

boundary plane in such a way that the waves (4) and (9) may

be regarded as waves incident and re¯ected on this plane.

Thus, let us rewrite (9) in the form

	r
pq�r� � f exp�ÿika3=2��kz=Kpqz�1=2�Ypq ÿ sign�Ypq�

� �Y2
pq ÿ 1�1=2� exp�iKÿpq�r� a3=2��: �11�

Comparing the exponential terms in (4) and (11), we can see

that this `mathematical' plane should be shifted from the

uppermost atomic layer m3 = 0 by the vector d = ÿa3=2. This

conclusion is apparently connected by the fact that the shift

between two neighbour crystal planes is equal to a3.

In Litzman & Dub (1990), we compared the results yielded

by our treatment with formulae used in Laue's theory and

found that the differences are of order (��)2, where �� =

� ÿ �B is the deviation of the incident wave (4) from the Bragg

diffraction position. Thus, the assumption of a mathematical

boundary plane used in Laue's theory indeed provides good

results. Furthermore, considering the crystalline slab formed

by N � 1 atomic planes (i.e. m3 = 0, 1, 2, . . . , N), we found in

Litzman & RoÂ zsa (1990) that its thickness is �N � 1�a3z (and

not Na3z), which means that the `mathematical' upper
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2 The differences between the mathematical treatments of the problem used
by Ewald and by us are outlined in Appendix A.
3 The scattering of an electromagnetic wave on a system of coupled point
dipoles can be handled in an analogous way (Litzman & RoÂ zsa, 1977; Litzman,
1978).

4 See equations (8)±(10) in Litzman & Dub (1990).
5 In equation (9) of the paper by Litzman & Dub (1990), we put R2 = 1 [cf.
equation (18) in Litzman & Dub (1990)] and express R1 by means of equation
(2.27) in Litzman et al. (1996).
6 In equation (2.28) in Litzman et al. (1996), we put F

�1�
00;pq � 1 (see discussion

on p. 4717 in this paper).
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(bottom) boundary plane is to be shifted from the atomic

plane m3 = 0 (m3 = N) by the vector d = ÿa3z=2 (d = a3z=2).

It should be mentioned that our formulae (9) and/or (11)

are valid (in contradiction to the usual results of Laue's

theory) for both coplanar and noncoplanar re¯ections, near to

or far from the Bragg diffraction positions, and can be

generalized to the multiwave case (Litzman & MikulõÂk, 1999).

On the other hand, (9) has been derived for the crystal with

the cell containing one atom only. As for a lattice with a basis,

we found the general solution of the diffraction problem in

Litzman (1986) but resulting formulae for re¯ected waves in

such a simple and transparent form as in (9) and (10) have not

been obtained yet. Nevertheless, taking into account the

structure of general results derived by Litzman (1986), we may

expect that also in this case a `mathematical' boundary plane

would lie above the uppermost atomic layer, the shift vector d
being of course dependent on the content of the cell.

3. Conclusions

Summarizing, we may assert that the approach to the

boundary problem used in the Laue dynamical diffraction

theory has been justi®ed by the results we obtained within the

framework of Ewald's theory, which being based on the

microscopic discrete model of a crystal does not claim to set up

any boundary conditions.

This result may be supported by more physical arguments.

The differential equation (1) provides, according to the

Lorentz theory, a macroscopic description of microscopic

interactions in the crystal. If the crystal is suf®ciently large, the

diffraction becomes a bulk effect being only slightly in¯uenced

by the surface. A concluding note is that the problem of the

boundary in Laue's theory is similar to that of cyclic boundary

conditions (see e.g. Born & Huang, 1954; Ledermann, 1944;

Litzman, 1975).

APPENDIX A

Here, we mention the differences between the mathematical

treatment used by Ewald and by us.

Equation (7) is analogous to that for forced vibrations of a

system of electromagnetically coupled oscillators in Ewald's

papers. As to his method of the solution of (7), let us recall

Ewald's own words (Ewald, 1916b): `Es erscheine wenig

aussichtsreich, wollte man versuchen, metodisch das System

von Bewegunsgleichungen fuÈr alle Dipole, anfangend mit

denen des Randes, aufzustellen und zu loÈsen. Denn die auf der

rechten Seite dieser Gleichung erscheinenden KraÈfte haÈngen

selbst von saÈmtlichen Dipolschwingungen ab, und zwar in

verwickelter Art, so dass die Berechnung der KraÈfte ohne

vorherige Kenntnis der Dipolschwingungen gar nicht moÈglich

ist. Eine andere Methode der LoÈsung besteht in einem

geschickten Ansatz der Dipolschwingungen. Wir koÈnnen dann

die elektrischen KraÈfte summieren und uns uÈberzeugen, ob die

dynamischen Bedingungen fuÈr die Schwingunsweize des

Ansatzes erfuÈ llt sind.'

Thus, Ewald started by ®nding the ®eld inside an

unbounded crystal. Next, using formal manipulations he

showed that a half-crystal produces (i) the same interior ®eld

as in the unbounded crystal, and (ii) two additional sets of

®elds composed of waves travelling with the velocity of light in

vacuum. Waves of one set move away from the crystal and

correspond to the re¯ected ®eld. Waves of the other set

propagate into the crystal. These waves and the incident wave

penetrating into the crystal are made to cancel throughout the

crystal. The vibration of the crystal is then superposition of

dynamically possible proper modes with no alien ®elds

destroying the self-consistency. The result is that the ampli-

tudes of the diffracted rays are fully determined in terms of the

amplitude of the incident wave.

On the other hand, we solve immediately the system of

equations (7). Thus we obtain (i) the dispersion relation for

the z components of wavevectors of refracted waves, and (ii)

the inhomogeneous system of linear algebraic equations for

the amplitudes of the atomic vibrations generated by the

incident wave (4) impinging upon the crystal from the vacuum.

The re¯ected ®eld is found straightforwardly by inserting the

solution of (7) into (6). Moreover, if we know the solution of

the equations of motion (7) the ®eld inside the crystal may also

be evaluated (Dub, 1984). Let us emphasize that both

re¯ected and refracted ®elds as well as the extinction theorem

have been derived in Litzman & RoÂ zsa (1977), Litzman (1978,

1986) and Dub (1984) by a purely algebraic way from the basic

equations without any further assumptions.
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critical reading of the manuscript and Professor H. J.

Juretschke for providing us with valuable references and for

his interest.
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